- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Avdonin, Sergei A. (2)
-
Khmelnytskaya, Kira V. (2)
-
Kravchenko, Vladislav V. (2)
-
Avdonin, Sergei A (1)
-
Choque‐Rivero, Abdon E (1)
-
Mikhaylov, Alexander S (1)
-
Mikhaylov, Victor S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT The question of what conditions should be set at the nodes of a discrete graph for the wave equation with discrete time is investigated. The variational method for the derivation of these conditions is used. A parallel with the continuous case is also drawn. As an example, the problem of shape controllability from the boundary is studied.more » « lessFree, publicly-accessible full text available March 30, 2026
-
Avdonin, Sergei A.; Khmelnytskaya, Kira V.; Kravchenko, Vladislav V. (, Boletín de la Sociedad Matemática Mexicana)Abstract A method for successive synthesis of a Weyl matrix (or Dirichlet-to-Neumann map) of an arbitrary quantum tree is proposed. It allows one, starting from one boundary edge, to compute the Weyl matrix of a whole quantum graph by adding on new edges and solving elementary systems of linear algebraic equations in each step.more » « less
-
Avdonin, Sergei A.; Khmelnytskaya, Kira V.; Kravchenko, Vladislav V. (, Mathematical Methods in the Applied Sciences)The inverse problem of recovery of a potential on a quantum tree graph from the Weyl matrix given at a number of points is considered. A method for its numerical solution is proposed. The overall approach is based on the leaf peeling method combined with Neumann series of Bessel functions (NSBF) representations for solutions of Sturm–Liouville equations. In each step, the solution of the arising inverse problems reduces to dealing with the NSBF coefficients. The leaf peeling method allows one to localize the general inverse problem to local problems on sheaves, while the approach based on the NSBF representations leads to splitting the local problems into two‐spectrum inverse problems on separate edges and reduces them to systems of linear algebraic equations for the NSBF coefficients. Moreover, the potential on each edge is recovered from the very first NSBF coefficient. The proposed method leads to an efficient numerical algorithm that is illustrated by numerical tests.more » « less
An official website of the United States government
